Jet Propulsion Laboratory JPL Earth JPL Solar System JPL Stars and Galaxies JPL Science and Technology MGS Home NASA Home Page Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content
NASA logo, Jet Propulsion Laboratory, California Institute of Technology header separator
+ NASA Homepage
 
   
Mars Global Surveyor Banner
Overview Science Technology The Mission People Features Events Multimedia
Mars for Kids
Mars for Students
Mars for Educators
Mars for Press
+ Mars Home
+ MGS Home
Multimedia
Summary
Images
bullet Latest Images
bullet Spacecraft
bullet Mars Artwork
bullet Launch
bullet 8 Year Anniversary
Videos
horizontal line

Return to Latest Images index
06-Dec-2006
NASA Images Suggest Water Still Flows in Brief Spurts on Mars    Full Press Release
New Gully Deposit in a Crater in Terra Sirenum

Has liquid water flowed on Mars in this decade?

In June 2000, we reported the discovery, using the Mars Global Surveyor's Mars Orbiter Camera, of very youthful-looking gullies found on slopes at middle and high latitudes on Mars. Since that time, tens of thousands of gullies have been imaged by all of the Mars orbiting spacecraft: Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter.

During the years since the original June 2000 report, the Mars Global Surveyor's camera was used to test the hypothesis that the gullies may be so young that some of them could still be active today. The test was very simple: re-image gullies previously seen by the camera and see if anything has changed.

A gully on the wall of an unnamed crater in Terra Sirenum, at 36.6 degrees south, 161.8 degrees west.

Figure A - Image credit: NASA/JPL/Malin Space Science Systems

Browse Image | Large (1.1 MB) | High resolution (1.6 MB)
Hi-Res (NASA's Planetary Photojournal)

In two cases, something changed. One of those cases is presented here. A gully on the wall of an unnamed crater in Terra Sirenum, at 36.6 degrees south, 161.8 degrees west, was initially imaged by the camera on Dec. 22, 2001 (Figure A, left). It showed nothing noteworthy at the location where a change would later be observed, but a group of nearby gullies exhibited an unusual patch of light-toned material. As part of our routine campaign to re-image gully sites using the camera, another image of this location was acquired on April 24, 2005. A new light-toned deposit had appeared in what was otherwise a nondescript gully (Figure A, right). This deposit was imaged again by the camera on Aug. 26, 2005, at a time when the sun angle and season were the same as in the original December 2001 image, to confirm that indeed the light-toned feature was something new, not just a trick of differing lighting conditions. In August 2005, the feature was still present.

Figure A: This set of images shows a comparison of the gully site as it appeared on Dec. 22, 2001 (left), with a mosaic of two images acquired after the change occurred (the two images are from Aug. 26, 2005, and Sept. 25, 2005). Sunlight illuminates each scene from the northwest (top left). The 150-meter scale bar represents 164 yards.

This is a mosaic of images that cover the entire unnamed crater in Terra Sirenum. This image shows an enlargement of a portion of another image from August 2005, showing details of the new, light-toned gully deposit.
Figure B
Browse Image | Large (1.1 MB)
Figure C
Browse Image | Large (172 Kb)
Image credit: NASA/JPL/Malin Space Science Systems

Figure B: This is a mosaic of images that cover the entire unnamed crater in Terra Sirenum. The location of the light-toned gully deposits, old and new, is indicated. This is a mosaic of images acquired by the camera in 2005 and 2006. The 500-meter scale bar equals approximately 547 yards.

Figure C: This image shows an enlargement of a portion of another image from August 2005, showing details of the new, light-toned gully deposit. The new material covers the entire gully floor, from the point at which the gully emerged from beneath a mantled slope, down to the spot at which the channel meets the crater floor. At this break in slope, the gully material, as it was emplaced, spread out into five or six different fingers (this is called a "digitate" termination as in finger digits). The 75-meter scale bar represents a distance of about 82 yards.

the Mars Orbiter Camera team repeatedly imaged this site throughout 2005 and 2006. Four examples are shown here, acquired in April 2005, August 2005, February 2006 and April 2006.

Figure D - Image credit: NASA/JPL/Malin Space Science Systems

Browse Image | Large (128 Kb)

Figure D: To confirm that the new, light-toned gully deposit is not just a trick of changing illumination conditions as the sun rises to different levels in the sky each season, the Mars Orbiter Camera team repeatedly imaged this site throughout 2005 and 2006. Four examples are shown here, acquired in April 2005, August 2005, February 2006 and April 2006. The "i=" indicates solar-incidence angle, or the height of the sun in the local sky, relative to a case where the sun would be directly overhead (i=0 degrees). Thus, the higher the incidence angle, the lower the sun would appear in the sky to an observer on the ground.

These images show that a material flowed down through a gully channel, once between December 2001 and April 2005. After the flow stopped, it left behind evidence -- the light-toned deposit. The deposit is thin enough that its thickness cannot be measured in the camera's 1.5-meters-per-pixel images. However, it does exhibit a digitate termination, suggesting that the material flowed in a fluid-like manner down the approximately 25 degree slope before splaying out into multiple small lobes at the point where the crater wall meets the crater floor and the slope suddenly drops to near zero. This deposit, and a similar one in a crater in the Centauri Montes, together suggests that the materials involved were low-volume debris flows containing a mixture of sediment and a liquid that had the physical properties of liquid water. In this case, we propose that the water came from below the surface, emerged somewhere beneath the mantle covering the original crater wall, and then ran down through a previously existing gully channel. No new gully was formed, but an old one was re-activated.

The light tone of the new gully deposit, and that of the older, neighboring gullies, is intriguing. We cannot know from these images whether the light tone indicates that ice is still present in and on the surface of the deposit. Indeed, ice may not be likely: under present conditions on the surface of Mars, ice would be expected to have sublimed, or vaporized, away fairly shortly after the new deposit formed. However, the light-toned material could be frost that forms and re-forms frequently as trapped water-ice sublimes and "exhales" from within the deposit. Alternatively, the light-tone may result if the deposit consists of significantly finer grains (for example, fine silt) than the surrounding surfaces, or if the deposit's surface is covered with minerals such as salts formed as water evaporated from the material.

Do these images prove that water has flowed on Mars? No, they cannot. However, they provide the first very tantalizing evidence that this may have occurred. While the surface environment on Mars is extremely dry, drier than the most arid deserts on Earth, liquid water from beneath the Martian surface may have come out of the ground and flowed across this little portion of the red planet in this decade.

The Mars Global Surveyor mission is managed for NASA's Office of Space Science, Washington, by NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, also in Pasadena. Lockheed Martin Space Systems, Denver, developed and operates the spacecraft. Malin Space Science Systems, San Diego, Calif., built and operates the Mars Orbiter Camera.

For more information about images from the Mars Orbiter Camera, see http://www.msss.com/mgs/moc/index.html.

New Gully Deposit in a Crater in the Centauri Montes Region

Two Martian southern mid-latitude craters have new light-toned deposits that formed in gully settings during the course of the Mars Global Surveyor mission. Images from the Mars Orbiter Camera documented one case in an unnamed crater in Terra Sirenum, described in an accompanying release (see PIA09027 or MOC2-1618). The second case, in an unnamed crater in the Centauri Montes region, east of the Hellas Basin, is described here.

Gullies were first described by Mars Orbiter Camera scientists in June 2000, and many examples were presented in our June 2000 web releases and in a paper published in the journal Science. Additional examples of these middle and high-latitude landforms can be seen among the other more than 1,600 web releases.

This figure shows the southeast wall of the unnamed crater in the Centauri Montes region, as it appeared in August 1999, and later in September 2005.

Figure A - Image credit: NASA/JPL/Malin Space Science Systems

Browse Image | Large - annotated (1.6 MB)
Large - not annotated (1.6 MB)

The new gully deposit in an unnamed crater in the Centauri Montes region is located near 38.7 degrees south latitude, 263.3 degrees west longitude. Like the new gully deposit in Terra Sirenum, this one has a light tone relative to its surroundings. It is on an equator-facing slope on which numerous narrow gully channels occur. As this slope is always in sunlight during the afternoons when Mars Global Surveyor passes overhead, the gullies always appear somewhat "washed out," just as craters on a full Moon do when viewed from Earth with a telescope.

This picture is a colorized view of the light-toned gully deposit, draped over a topographic image derived from Mars Global Surveyor's Mars Orbiter Laser Altimeter data.
Figure B
Image credit: NASA/JPL/Malin Space Science Systems
Browse Image
Large image (760 Kb)
High resolution (1.6 MB)
Hi-Res (NASA's Planetary Photojournal)
The new, light-toned flow was first noticed by the Mars Orbiter Camera science operations team in an image acquired on Sept. 10, 2005. Re-examination of other images of this crater showed that the new deposit had actually been present on Feb. 21, 2004, when the distal (down-slope) end of the deposit was captured in other images. In February 2004, the deposit had gone unnoticed because only a small portion of it was imaged. This location was first imaged by the Mars Orbiter Camera on Aug. 30, 1999. The deposit was not present at that time. Thus, it formed between Aug. 30, 1999 and Feb. 21, 2004.

Roughly 20 percent brighter than the surface as it appeared before the flow occurred, the new deposit exhibits characteristics consistent with transport and deposition of a fluid that behaved like liquid water and likely transported some fine-grained sediment along with it. The distal end of the flow broke into several branches, or digits, and the material diverted and flowed around low obstacles. As with the example in Terra Sirenum, the depth of the flow is too thin to be measured in 1.5-meter-per-pixel (1.7-yard-per-pixel) images, so a very small volume of liquid and sediment was involved. While the material flowed and easily budded into several branches, it also must have moved slow enough to not topple over some of the low obstacles in its path.

Figure A: This figure shows the southeast wall of the unnamed crater in the Centauri Montes region, as it appeared in August 1999, and later in September 2005. No light-toned deposit was present in August 1999, but appeared by February 2004. The 300-meter scale bar represents 328 yards.

This image is a mosaic of several Mars Global Surveyor images, colorized using a table derived from Mars Reconnaissance Orbiter camera color data and overlain on a sub-frame of a Mars Odyssey Thermal Emission Imaging System image.
Figure C
Image credit: NASA/JPL/Malin Space Science Systems
Browse Image
Large image - annotated (3.5 MB)
High resolution(3.5 MB)
Figure B: This picture is a colorized view of the light-toned gully deposit, draped over a topographic image derived from Mars Global Surveyor's Mars Orbiter Laser Altimeter data. The color comes from a table derived from the colors of Mars as seen by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment.

Figure C: The third figure is a mosaic of several Mars Global Surveyor images, colorized using a table derived from Mars Reconnaissance Orbiter camera color data and overlain on a sub-frame of a Mars Odyssey Thermal Emission Imaging System image. The 1-kilometer scale bar represents about 0.62 miles.

Figure D: The fourth figure is a colorized view of the light-toned gully deposit as viewed from an oblique perspective, draped over topography derived from Mars Global Surveyor's Mars Orbiter Laser Altimeter data. The color comes from a table derived from the colors of Mars as seen by the Mars Reconnaissance Orbiter camera.

This picture is a  colorized view of the light-toned gully deposit as viewed from an oblique perspective, draped over topography derived from Mars Global Surveyor's Mars Orbiter Laser Altimeter data.
Figure D
Image credit: NASA/JPL/Malin Space Science Systems
Browse Image
Large image (932 Kb)
The new light-toned flow, by itself, does not prove that liquid water was involved in its genesis. However, this observation and the similar light-toned flow in Terra Sirenum together show that some gully sites are indeed changing today, providing tantalizing evidence there might be sources of liquid water beneath the surface of Mars right now. In both cases, these new flows may be indicating the locations of aquifers (subsurface rocks saturated with water) that could be detected by orbiting, ground-penetrating radar systems such as the Mars Express Mars Advanced Radar for Subsurface and Ionosphere Sounding or the Mars Reconnaissance Orbiter's Mars Shallow Subsurface Radar.

The Mars Global Surveyor mission is managed for NASA's Office of Space Science, Washington, by NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, also in Pasadena. Lockheed Martin Space Systems, Denver, developed and operates the spacecraft. Malin Space Science Systems, San Diego, Calif., built and operates the Mars Orbiter Camera.

For more information about images from the Mars Orbiter Camera, see http://www.msss.com/mgs/moc/index.html.

Groundwater May be Source for Erosion in Martian Gullies

Since their discovery early during the Mars Global Surveyor's Mars Orbiter Camera investigation, as first reported in June 2000, Martian gullies have presented a puzzle for the Mars science community: what fluid was responsible for the erosion that created the channels, and where did it come from? The gullies seem to be quite young in a geologic sense (millions of years or less), yet modern and geologically-recent Mars is an extremely dry place, where water ice sublimates directly to gas when the temperature is warm enough.

The first picture shows a pair of gully channels that emerge, fully-born at nearly their full width, from beneath small overhangs on the north wall of Dao Vallis.
Figure A
Image credit: NASA/JPL/Malin Space Science Systems
Browse Image
Large image - annotated (236 Kb)
High resolution (288 Kb)
Hi-Res (NASA's Planetary Photojournal)
Since June 2000, many hypotheses have been discussed at scientific meetings, in the scientific journals and elsewhere. The original June 2000 hypothesis held that the fluid was liquid water (either pure, salty, acidic, etc.) that came to the surface where slopes intersected conduits of groundwater. Such slopes include crater walls, valley walls, hills, massifs and crater central peaks. Later investigators explored the possibility that rather than liquid groundwater, the source was ground ice, which, under some climate conditions, melted to produce liquid runoff. Still others noted that thick mantles covered a fraction of the gully-bearing slopes, suggesting that the mantles were ancient, dust-covered snow or ice packs that might melt at the base to make liquid water runoff. Water was not the only fluid considered by various colleagues; carbon dioxide can be fluid at some pressures and temperatures. Fluid carbon dioxide was also proposed as a candidate fluidizing agent. Even dry mass movement, or land sliding, of unconsolidated granular material can exhibit some fluid-like behavior. Such mass movements were considered as an explanation for the gullies.

The presence of channels primarily formed by erosion but also displaying features representing along-channel deposition, such as levees and meanders, and terminal depositional aprons consisting of dozens to hundreds of individual flow lobes, contributed to the general acceptance of the hypothesis that gullies involved the action of liquid water.

Throughout the Mars Global Surveyor mission, the Mars Orbiter Camera team continued to image gullies at every opportunity, looking for new gullies, taking higher resolution images of previously identified gullies, and monitoring the gullies for changes that might occur. Among the results of this extensive survey are numerous examples of gullies that have geological relations to other things in their vicinity. This provides support for the hypothesis that the fluid responsible for the gullies came from beneath the ground, either as groundwater or melting of ice in the Martian subsurface. Three of the best examples are presented here.

Figure A: The first picture shows a pair of gully channels that emerge, fully-born at nearly their full width, from beneath small overhangs on the north wall of Dao Vallis. These overhangs are probably created by the presence of a hard-rock layer. Liquid, probably water, percolated through permeable layers just beneath these harder, more resistant rock layers. The arrow points to the place where one of the two neighboring channels emerges. This is a sub-frame of an image acquired on Jan. 10, 2006, located near 34.2 degrees south latitude, 268.1 degrees west longitude. The 150-meter scale bar is about 164 yards wide.

The second picture shows a gully that formed on the wall of a crater that intersected a mare-type ridge.
Figure B
Image credit: NASA/JPL/Malin Space Science Systems
Browse Image
Large image - annotated (524 Kb)
Large image(524 Kb)
Figure B: The second picture shows a gully that formed on the wall of a crater that intersected a mare-type ridge. The term, mare, is from the dark volcanic plains of Earth's moon, for example Mare Tranquilitatis was the plain on which the Apollo 11 crew landed in 1969. The lunar maria (maria is the plural form of mare), when viewed from above, have many "wrinkle" ridges. These ridges are the surface expression of thrust faults. The mare-type ridge in the picture shown here is thus the product of faulting, as rocks on the west (left) side of the image were thrust toward the east (right). Finding a gully associated with a fault is excellent evidence for the groundwater hypothesis, because ground water percolates through cracks and pores in the ground. On Earth, springs (where groundwater comes to the surface) are often found along fault lines. What is most important about this particular Martian gully is that it occurs equatorward of 30 degrees south, which is extremely unusual. The only gully in this crater is the one associated with the fault. It is essentially the site of a spring, now dried up perhaps. This picture is a sub-frame of an image located near 29.1 degrees south latitude, 207.5 degrees west longitude, acquired on Jan. 17, 2005.

The third picture shows a small crater on the rim of a larger crater.
Figure C
Image credit: NASA/JPL/Malin Space Science Systems
Browse Image
Large image - annotated (460 Kb)
Large image (460 Kb)
Figure C: The third picture shows a small crater on the rim of a larger crater. Only a small portion of the wall of this larger crater is captured in the image. Immediately beneath the small crater occurs a group of gullies. The presence of these gullies also supports the groundwater hypothesis because impacting meteors will fracture the rocks into which they form a crater. In this case, there would be an initial set of subsurface fractures caused by the large impact that created the original, large crater. Then, when the smaller crater formed, it would have created additional fractures in its vicinity. These extra fractures would then have provided pathways, or conduits, through which ground water would come to the surface on the wall of the larger crater, thus creating the gullies observed. One might speculate that the group of gullies was formed by the impact that made the small crater, because of the heat and fracturing of rock during the impact process. However, the gullies are much younger than the small crater; the ejecta from the small crater has been largely eroded away or buried, and the crater partially filled, while the gullies appear sharp, crisp and fresh. This is a portion of an image located near 33.9 degrees south latitude, 160 degrees west longitude, acquired on March 31, 2006.

The Mars Global Surveyor mission is managed for NASA's Office of Space Science, Washington, by NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, also in Pasadena. Lockheed Martin Space Systems, Denver, developed and operates the spacecraft. Malin Space Science Systems, San Diego, Calif., built and operates the Mars Orbiter Camera.

For more information about images from the Mars Orbiter Camera, see http://www.msss.com/mgs/moc/index.html.

JPL Image Use Policy

Credits Feedback Related Links Sitemap
USA Gov
National Aeronautics and Space Administration