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Chap. 21
Passive networks as filters of frequency (I Part)
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Generalities


In the following figure we draw the three basic units that we will study and we will design, where


Z0T  =  (Z1Z2 + Z12/4)1/2

Z0  =  (Y1Y2 + Y22/4)1/2

Z0TZ0   =  Z1Z2




If we want that in this network thermal energy (active) doesn't vanish, it will be completed that its impedances are it reactivate pure (in the practice with high Qef)


Z1  =  j X1

Z2  =  j X2

X1     0


X2     0

what will determine us


Z0T  =  j (X1X2 + X12/4)1/2

Z0  =  (B1B2 + B22/4)1/2

Z0TZ0   =  - X1X2

On the other hand, in the cell following T observes that


ii + io  =  (vi - v2) / Z1 + (vo - v2) / Z1  =   v2 / Z2



and as we have seen in the chapter of passive networks as adapters of impedance, we have that the propagation function is here as


e  =  vi / v2  =  v2 / vo

sh (/2)  =  sh (/2) cos (/2) + j ch (/2) sen (/2)  =  (X1/4X2)1/2

When the reactances is of the same sign we have


Z0T  =  j (X1X2 + X12/4)1/2  =  j (X1X2 + X12/4)1/2  =   j X0T
   imaginaria
what demonstrates that


sh (/2) cos (/2)  = (k/4)1/2

k  =  X1/X2
and therefore


  =  2 arg sh k/41/2





 attenuate band

  =  0


Now in the inverse case, that is to say when the reactances is of opposed sign


Z0T  =  j (X1X2 + X12/4)1/2  =  j [-X1X2 - (1 - k/4)]1/2
being able to give that


- k/4 >  - 1     k < 4


Z0T  =  R0T






   real

  =  0







   pass band

  =  2 arc sen k/41/2
or


- 1  > k/4 >  -      k > 4


Z0T  =  j X0T






   imaginary

  =  2 arg ch k/41/2





   attenuate band

  =  ± 




For the pattern  the analysis is similar.

Filter of product of constant reactances


The filter is called with this name —with respect the frequency— when X1 and X2 are a capacitive and the other inductive, and to its product we call it R2

Z1Z2  =  L / C  =  R2    R2()

If we are inside the band pass we know that it is completed


-1  <   X1/X2  <  0

consequently


Z0T  =  R  (1 - k)1/2

Z0  =    R / (1 - k)1/2

Z0TZ0   =  R0TR0   =  R2





When putting «n» stages in cascade the attenuation and the phase displacement obviously will increase. Returning to the drawing of the previous one, if we call Av to the amplification (or attenuation, since it can have syntonies that make it) of the voltage in the cell


Av  =  vo / vi  =  Av e j
it is the propagation


e  =  (vent / vsal) (RL/Rg)1/2  =  Av-n (RL/Rg)1/2  =  Av-n (RL/Rg)1/2 e jn

  =  ln (Av-n (RL/Rg)1/2)


  =  -n
Design low-pass


Be the data


RL  = ...   Rg  = ...   fmax  = ...





Having present the equations and previous graph has


(X1/X2)max = (X12/-R2)max = - 4     X1(max) = 2 R


R2  =  X1X2  = L1 / C2
and we calculate finally


La  =  L1 / 2  =  (RgRL)1/2 / max  = ...  (alto Qef )


Cb  =  C2  =  2 / (RgRL)1/2 max  = ...

Design high-pass


Be tha data


RL  = ...   Rg  = ...   fmin  = ...





Having present the equations and previous graph has


(X1/X2)min = (X12/-R2)min = - 4     X1(min) = - 2 R


R2  =  X1X2  = L2 / C1
and we calculate finally


Lb  =  L2  =  (RgRL)1/2 / 2 min  = ...  (alto Qef )


Ca  =  2 C1  =  2 / (RgRL)1/2 min  = ...

Design band-pass


Be tha data


RL  = ...   Rg  = ...   fmin  = ...   fmax  = ...





If we design


L1C1  =  L2C2
having present the equations and previous graph has


R2  =  [ (L1 1/C1) / (C2 1/L2) ]  =  L2 / C1

± [ (X1/X2)max;min / 4 ]1/2  =  ± [ (X12/-R2)max;min / 4 ]1/2  =  ± 1


  X1(max;min) = ± 2 R


X1(max) = maxL1 - 1/maxC1  =  2 R


X1(min) = minL1 - 1/minC1  =  - 2 R

and we calculate finally


La  =  L1 / 2  =  (RgRL)1/2 / (max - min)  = ...  (alto Qef )


Ca  =  2 C1  =  (1/min - 1/max) / (RgRL)1/2  = ...


Lb  =  L2  =  RgRLCa / 2 = ...  (alto Qef )


Cb  =  C2  =  LaCa / Lb  = ...


If we wanted to know the value of  0 we also make


(X1/X2)max;min  =  [ - (2L2C1 - 1)2 / 2L2C1 ]max;min  =




  =  [ - (2LaCa - 1)2 / 2La(Ca/2) ]max;min  =  - 4

what will determine


max;min  =  0 ±  (2LaCb)-1/2 


0  =  (max + min) / 2  =  [ (1/Ca + 1/2Cb) / La ]1/2  = ...

Design band-attenuate


Be tha data


RL  = ...   Rg  = ...   fmin  = ...   fmax  = ...





If we design


L1C1  =  L2C2
having present the equations and previous graph has


R2  =  [ (L2 1/C2) / (C1 1/L1) ]  =  L1 / C2

± [ (X1/X2)max;min / 4 ]1/2  =  ± [ (X12/-R2)max;min / 4 ]1/2  =  ± 1


  X1(max;min) = ± 2 R


X1(max) = maxC1 - 1/maxL1  =  2 R


X1(min) = minC1 - 1/minL1  =  - 2 R

and we calculate finally


La  =  L1 / 2  =  (RgRL)1/2 / (1/min - 1/max)  = ...  (alto Qef )


Ca  =  2 C1  =   1 / (RgRL)1/2 (max - min) = ...


Cb  =  C2  =  2La / RgRL  = ...


Lb  =  L2  =  LaCa / Cb = ...  (alto Qef )

Filter of product of constant reactances, derived "m" times


I is defined this way to the networks like those that we study but with the following conditions


X1m  =  m X1

0  <  m    1


Z0Tm  =  Z0T

Z0m   =    Z0
of where it is


Z0Tm  =  j (X1mX2m + X1m2/4)1/2

Z0m  =  - j (B1mB2m + B1m2/4)1/2

Z0Tm Z0m  = - X1mX2m =   Z0T Z0

X2m =  (1 - m2) X1 / 4m  +  X2 / m


If we keep in mind the precedent definitions, it is completed that


X1m/X2m =  m2 / [ (1 + m2)/4 + X2/X1 ]





Now we outline the previous consideration again but it stops our derived network


sh (m/2)  =  sh (m/2) cos (m/2) + j ch (m/2) sen (m/2)  =  (X1m/4X2m)1/2
what determines that it stays the made analysis. We draw the graph then in function of X1/X2 again




standing out in her four zones:

—
ZONA I

4 / (m2 + 1)  <  X1/X2  <  



  <  X1m/X2m  <  - 4 m2 / (m2 + 16) 

—
ZONA II

0 <  X1/X2  <  4 / (m2 - 1) 



0  <  X1m/X2m  <  



m=  2 arg sh [ m / 1 - m2 + 4X2/X11/2 ]
   attenuate band



m=  0




Z0T  =  j X0T




   imaginary
—
ZONA III

- 4 <  X1/X2  <  0



- 4 m2 / (m2 + 16)   <  X1m/X2m  <  0




m=  0




   banda pasante



m=  2 arc sen [ m / 1 - m2 + 4X2/X11/2 ]




Z0T  =  R0T




   real
—
ZONA IV

 <  X1/X2  <  - 1



- 4 m2 / (m2 - 1)   <  X1m/X2m  <  - 4 m2 / (m2 + 16)




m=  2 arg ch [ m / 1 - m2 + 4X2/X11/2 ]
   attenuate band



m=  ± 



Z0T  =  j X0T




   imaginary




Now study the following case pass-band, where they are distinguished three stages

— adapting of impedances (it maintains to R0 constant inside the band pass), derived m1
    times of the prototype


— properly this filter pass-band (prototype of m = 1)


— filter of additional attenuation (it produces sharp selectivity flanks), derived m2 times of 
    the prototype




and to see like it affects to the adaptation of impedances the cell L, we make


Z0m  =  - X1mX2m / Z0Tm  = - X1mX2m / R0T  =


         =  R  { 1 - [ (1 - m2)X1/X2/4 ] } / { [ 1 - [ X1/X2/4 ] }1/2  =  R0m 

expression that subsequently we draw in the graph and it indicates that, to achieve a plane response of R0m in passing in the band, it should be


m1  =  0,6




Design low-pass


Be the data


RL  = ...   Rg  = ...   fmax  = ...





If to this circuit we replace it for the primitive one seen


La  =  2L2m

Lb  =  L1m/2 +  L1/2


Lc  =  L2m

Ld  =  L1m/2 +  L1m/2


Le  =  L1/2 +  L1m/2


Ca  =  C2m/2 


Cb  =  C2

Cc  =  C2m
they are


L1  =  2 RL / max = ...


C2  =  2 / RLmax = ...

and like we have chosen for maximum plane response


m1  =  0,6


X1m  =  L1m  =  m L1 


X2m  =  L2m -  1 / C2m  =  [ (1 - m2)L1 / 4m ] + [ (-1/C2) / m ]

we can project


La  =  2L2m  =  (1 - m12)L1 / 2m1  ~  0,53 L1 = ...


Lb  =  L1m/2 +  L1/2  =  (1 + m12)L1 / 2  =  0,8 L1 = ...


Ca  =  C2m/2  =  m1C2 / 2  =  0,3 C2  = ...


Cb  =  C2  = ...


Continuing, if we adopt an attenuation frequency the next thing possible to that of court to have a good selectivity


  = ...>max
we will be able to propose


(X1/X2)  =  - 2L1C2  =  4 / (m22 - 1)

deducing finally with it


m2  =  [ 1 - (4 / 2L1C2) ]1/2  =  [ 1 - (max/)2 ]1/2  = ...


Lc  =  L2m  =  (1 - m22)L1 / 4m2  = ...


Ld  =  L1m/2 +  L1m/2  = (m1 + m2)L1 / 2  = (0,6 + m2)L1 / 2  = ...


Le  =  L1/2 +  L1m/2  = (1 + m2)L1 / 2  = ...


Cc  =  C2m  = m2C2  = ...

Design high-pass


Be the data


RL  = ...   Rg  = ...   fmin  = ...




If to this circuit we replace it for the primitive one seen


La  =  2L2m

Lb  =  L2

Lc  =  L2m

Ca  =  C2m/2 


Cb  =  2C1m//2C1

Cc  =  C2m

Cd  =  2C1m1//2C1m2

Ce  =  2C1//2C1m
they are


L2  =  RL / 2 min = ...


C1  =  1 / 2 RLmin = ...

and like we have chosen for maximum plane response


m1  =  0,6


X1m  =  - 1 / C1m  =  - m / C1

X2m  =  L2m -  1 / C2m  =  [ L2 / m ] + [ (1 - m2)(-1/C1) / 4m ]

we can project


La  =  2L2m  =  2L2 / m1  ~  3,33 L2  = ...


Lb  =  L2  = ...


Ca  =  C2m/2  =  2m1C1 / (1 - m12)  ~  1,87 C1  = ...


Cb  =  2C1m//2C1  =  2C1 / (1 + m1)  =  1,25 C1  = ...


Continuing, if we adopt an attenuation frequency the next thing possible to that of court to have a good selectivity


  = ...<min
we will be able to propose


(X1/X2)  =  - 1 / 2L2C1  =  4 / (m22 - 1)

deducing finally with it


m2  =  [ 1 - (4 2L2C1) ]1/2  =  [ 1 - (/min)2 ]1/2  = ...


Lc  =  L2m  =  L2 / m2  = ...


Cc  =  C2m  =  4m2C1 / (1 - m22)  = ...


Cd  =  2C1m1//2C1m2  =  2C1 / (m1 - m2)  =  2C1 / (0,6 - m2)  = ...


Ce  =  2C1//2C1m  =  2C1 / (1 + m2)  = ...

Design band-pass


Be the data


RL  =  Rg  = ...   fmin  = ...   fmax  = ...




Continuing, if we adopt an attenuation frequency 2 the next thing possible to that of court to have a good selectivity


2  = ...>max
we will be able to use the following expression to verify a wanted position of 1 of in the system


1  =  maxmin / 2  = ...<min

Now with the following equations


0  =  (maxmin)1/2   = ...


m  =  { 1 - [ (max/0 - 0/max) / (2 /0 - 0/2 ) ]2 }1/2   = ...


A  =  (1 - m2) / 4m  = ...


B  =  2 /0  = ...


L  =  2RL / (max - min)   = ...


C  =  (1/min - 1/max) / 2RL   = ...
we will be able to calculate finally


La  =  2LA(1 + B-2)  = ...


Lb  =  2LA(1 + B2)  = ...


Lc  =  (1 + m)L / 2  = ...


Ld  =  RL2C  = ...


Le  =  (1 + m)L / 2  = ...


Lf  =  LA(1 + B-2)  = ...


Lg  =  LA(1 + B2)  = ...


Lh  =  mL / 2  = ...


Ca  =  C / 2LA(1 + B2)  = ...


Cb  =  C / 2LA(1 + B-2)  = ...


Cc  =  2C / (1 + m)  = ...


Cd  =  L / RL2  = ...


Ce  =  2C / (1 + m)  = ...


Cf  =  C / LA(1 + B2)  = ...


Cg  =  C / LA(1 + B-2)  = ...


Ch  =  C / m  = ...

Design band-attenuate

Be the data


RL  =  Rg  = ...   fmin  = ...   fmax  = ...




Continuing, if we adopt an attenuation frequency 2 the next thing possible to that of court to have a good selectivity


2  = ...<max
we will be able to use the following expression to verify a wanted position of 1 of in the system


1  =  maxmin / 2  = ...>min

Now with the following equations


0  =  (maxmin)1/2   = ...


m  =  { 1 - [ (2 /0 - 0/2 ) / (max /0 - 0/max ) ]2 }1/2   = ...


A  =  (1 - m2) / 4m  = ...


L  =  2RL (1/min - 1/max)  = ...


C  = 1 / 2RL(max - min)    = ...
we will be able to calculate finally


La  =  LA / 2  = ...


Lb  =  2CRL2  / m  = ...


Lc  =  (1 + m)L  = ...


Ld  =  RL2C  = ...


Le  =  (1 + m)L  = ...


Lf  =  LA  = ...


Lg  =  RL2C  / m  = ...


Lh  =  mL  = ...


Ca  =  C / 2A  = ...


Cb  =  mL  / 2RL2  = ...


Cc  =  C / (1 + m)  = ...


Cd  =  L / RL2  = ...


Ce  =  C / (1 + m)  = ...


Cf  =  C / A  = ...


Cg  =  mL  / RL2  = ...


Ch  =  C / m  = ...

_________________________________________________________________________________
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