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Crossed filters

Generalites


In the following figure a symmetrical net is shown not dissipative of heat. Their characteristic impedance is


Z0  =  Z01  =  Z02  =  (jX1 jX2)1/2  =  (- X1X2)1/2

X1        0      X2

th (/2)  =  [ (ch - 1) / (ch + 1) ]1/2  =  (jX1 / jX2)1/2  =  (X1 / X2)1/2  =



 =  [ th (/2) + j tg (/2) ] / [1 + j th (/2) tg (/2) ]





When the sign of the reactances is different it happens


Z0  =  (- X1X2)1/2  =  X1X21/2  =  R0


  real pure

th (/2)  =  (X1 / X2)1/2  =  j X1 / X21/2


  imaginary pure

  =  0






  pass band

  =  arc tg X1 / X21/2
and when they are same


Z0  =  (- X1X2)1/2  =  j X1X21/2  =  j X0


  imaginary pure
th (/2)  =  (X1 / X2)1/2  =  X1 / X21/2


  real pure

th (/2)  <  1

here being been able to give two possible things


1)
X1X2 <  1



  =  2 arg th X1 / X21/2


  attenuate band


  =  0


2)
X1X2 >  1



  =  2 arg th X2 / X11/2


  attenuate band


  =  ± 

Subsequently we make the graph of this result Z0 = R0 in the band pass


Z0  =  R0  =  X1X21/2  =  X2 X1 / X21/2

 R0  X2  =  X1 / X21/2 / 2





Although these filters have a good selectivity, the variation of R0 with the frequency brings its little use. It can be believed that this would be solved if it is designed to the such reactances that their product is independent of the frequency (f.ex.: an inductance and a capacitance) and with it R0 that it is constant inside the band in passing, but however this is not possible because it will bring a negative product and then the band pass would be infinite.


With the purpose of designing these filters, we will use the equations of Foster


X(s)  =  H [ s (s2+b2) (s2+b2) ... ] / [ (s2+a2) (s2+c2) ... ]  =


       =  H [ sK + K0/s + i Ki s/(s2+i2) ]


H     H(s)

K  =  X(s=j) / s

K0  =  s X(s=j0)

Ki  =  (s2+i2) X(s=ji) / s



Design double band-pass


Be the data for the filter crossed network


f1  = ...   f2  = ...   f3  = ...   f4  = ...   





We outline a system that their reactances is of different sign (system LC) inside the band pass. Indeed, we choose


5  = ...   >   4



consequently


X1  =  H1 [ s (s2+22) (s2+42) ] / [ (s2+12) (s2+32) (s2+52) ]


X2  =  H1 [ s (s2+32) ] / [ (s2+22) (s2+52) ]

and for X1

K  =  0

K0  =  0


K1  =  [ (22-12) (42-12)  ] / [ (32-12)  (52-12) ]


Ca  =  1 / K1  = ...



La  =  K1 / 12  = ...


K3  =  [ (22-32) (42-32)  ] / [ (12-32)  (52-32) ]


Cb  =  1 / K3  = ...



Lb  =  K3 / 32  = ...


K5  =  [ (22-52) (42-52)  ] / [ (12-52)  (32-52) ]


Cc  =  1 / K5  = ...



Lc  =  K5 / 52  = ...

and now for X2

K  =  0

K0  =  0


K2  =  [ (32-22) ] / [ (52-22) ]


Cd  =  1 / K2  = ...



Ld  =  K2 / 22  = ...


K5  =  [ (32-52) ] / [ (22-52) ]


Ce  =  1 / K5  = ...



Le  =  K5 / 52  = ...

Filters RC

Generalites


These filters are not of complex analysis in their characteristic impedance and propagation function because they usually work desadaptates and they are then of easy calculation. The reason is that to the use being for low frequencies the distributed capacitances is not necessary to eliminate with syntonies, and the amplifiers also possess enough gain like to allow us these advantages.


On the other hand, we clarify that in the graphics of the next designs we will obviate, for simplicity, the real curved. One will have present that, for each pole or zero, the power half happens to some approximate ones 3 [dB] and in phase at about 6 [º].

Design low-pass


Be the data


RL  = ...   Rg  = ...   fmax  = ...   K  =  vsalp/vgp  = ...   <  1 





We outline the equations


K  =  RL / (Rg + R1 + RL)


max  =  1 / C1 RL//(Rg + R1)

and we design clearing of them


R1  =  RL (K-1 - 1) - Rg  = ...


C1  =  1 / max RL//(Rg + R1)  = ...

Design high-pass


Be the data


RL  = ...   Rg  = ...   fmin  = ...    K  =  vsalp/vgp  = ...   <  1





We outline the equations


K  =  R1//RL / (Rg + R1//RL)


min  =  1 / C1 (Rg + R1//RL)

and we design clearing of them


R1  =  1 / [ (K-1 -1)/Rg  -  1/RL ]  = ...


C1  =  1 / min (Rg + R1//RL)  = ...

Design band-pass


Be the data


RL  = ...   Rg  = ...   fmin  = ...   fmax  = ...   K  =  vsalp/vgp  = ...  <  1





The circuit will design it with the two cells seen up to now and, so that this is feasible, the second won't load to the first one; that means that


1 / C1  <<  1 / C2

If for example we adopt


C1  = ...

we will be able to design with it


C2  = ...  <<  C1

R1  =  1/maxC1  - Rg  = ...


R2  =  1/ (minC2  - 1/Rg)  = ...

and we verify the attenuation in passing in the band


R2//RL /  (R1 + Rg + R2//RL)  = ...     K

Design band-attenuate


Be the data


RL  = ... >> Rg  = ...   fmin  = ...   fmax  = ... 





If to simplify we design Rg and RL that are worthless


Rg  <<  R1

RL  >>  R1
the transfer is


vsalp/vgp  ~  (s + 0)2 / (s + min)(s + max)


0  =  (minmax)1/2  =  1 / R1C1

min ; max  ~  1,5 (1 ±  0,745) / R1C1
then, if we adopt


C1  = ...

we will be able to calculate and to verify


Rg  <<  R1  =  1 / (minmax)1/2C1  = ...  <<  RL
_________________________________________________________________________________
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